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SUMMARY. Adaptive line transect sampling offers the pot,ential of improved population density estimation 
efficiency over conventional line transect sampling when populations are spatially clustered. In adaptive 
sampling, survey effort is increased when areas of high animal density are located, thereby increasing the 
number of observations. Its disadvantage is that the survey effort required is not known in advance. We 
develop an adaptive line transect methodology that, by varying the degree of adaptation, allows total effort 
to be fixed at the design stage. Relative to conventional line transect surveys, it also provides better survey 
coverage in the event of disruption in survey effort, e.g., due to poor weather. In analysis, sightings from the 
adaptive sections are downweighted in proportion to the increase in effort. We evaluate the methodology 
by simulation and report on surveys of harbor porpoise in the Gulf of Maine, in which the approach was 
compared with conventional line transect sampling. 
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1. In t roduct ion  
Line transect sampling is widely used in wildlife population 
assessment, e.g., to estimate abundance of marine mammal 
populations. Many wildlife populations occur in loose spatial 
clusters or aggregations, and if the number of aggregations 
is small, the sample size may be inadequate for reliable esti- 
mation and precision may be poor. In addition, marine line 
transect surveys are typically expensive, involving the hire of 
ships or aircraft as well as the salary and living costs of ob- 
servers and crew. Generally, the survey platforms are available 
for a fixed time, but marine surveys are easily disrupted by 
external factors, such as the weather, and as a result there can 
be poor or uneven coverage of the survey area. Adaptive line 
transect sampling has been proposed by Pollard and Buckland 
(1997) both as a potential mechanism to improve precision of 
line transect density estimates for clustered populations and 
also to help improve survey coverage. 

Thompson (1992) and Thompson and Seber (1996) have 
proposed a number of mechanisms for adaptive sampling, 
where neighboring units are added to the sample whenever the 
value of the variable of interest satisfies some criterion. Typi- 
cally, these approaches are design unbiased (Thompson, 1992, 
p. 17), but the designs are not easily adapted to line transect 
sampling. In particular, in shipboard surveys, the designs can 
waste expensive ship time in moving from one transect line to 
another, detracting from any potential benefits in estimator 
precision. More problematic for design-unbiased methods, the 
amount of effort cannot be reliably predicted in advance, so 
that ship time may expire long before the study area has been 
fully surveyed if more animals than expected are encountered 

or available time is not fully utilized if fewer animals than 
expected are found. 

In adaptive line transect sampling, sampling intensity is in- 
creased when the number of observations within a sampling 
unit exceeds some limit (the trigger function). We advocate 
an approach in which the increase in sampling intensity is a 
function of the degree to which the vessel is ahead of or be- 
hind schedule. The increase in sampling intensity is measured 
by the effort factor; if, e.g., effort is doubled when the trigger 
is activated, the effort factor is two. The effort factor is then 
used to weight sightings to account for bias. The approach 
conditions on the effort factors, which are data dependent, 
and thus the method is not design unbiased. We use simula- 
tions to explore the properties of the methodology. 

Harbor porpoise (Phocoena phocoena) are common in in- 
shore waters through much of the world. They are small ceta- 
ceans that generally occur singly or in very small groups. They 
are vulnerable to entrapment and drowning in fisheries nets 
and are therefore subject to detailed study in several regions. 
One such region is the Gulf of Maine, where shipboard line 
transect surveys are routinely carried out to monitor popu- 
lation levels and trends. Such surveys are expensive, so it is 
important to use ship time efficiently. A series of experimental 
surveys was set up to explore the feasibility of adaptive line 
transect sampling (Palka and Pollard, 1999), and we illustrate 
the methodology through the analysis of these surveys. 

2. Methods 
The amount of adaptation is measured by the effort factor. 
The effort factor is defined to be the ratio of the effort used 
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Figure 1. Example notation, with constant effort factor 
over an adaptive section. The zigzag line signifies the actual 
effort, while the total nominal effort would be a straight line, 
1; for the section shown. 

following an adaptive track relative to the effort that would 
be used following the corresponding straight-line (nominal) 
track. Using conventional line transect estimators, systemat- 
ically increasing the effort in areas of higher animal density 
would lead to abundance overestimation. The adaptive line 
transect approach downweights the data from the adaptive 
sections to compensate for the increased effort. The weight- 
ing used is inversely proportional to the effort factor so that 
each section of transect is weighted in proportion to the length 
of straight-line (nominal) effort through that section. 

Many tracking designs for increasing the effort are possible 
(e.g. zigzag, hounds tooth, sinusoidal). For this article, we 
concentrate on the zigzag pattern (Figure 1) because it has 
a number of advantages. In particular, the trackline does not 
cross itself, there are no gaps in the trackline so that no search 
effort is lost in traveling from one transect to the next, and the 
track is easily followed (important for shipboard surveys). In 
addition, the increase in effort is directly related to the length 
and angle of the zigzags and thus can be fixed at  any value 
>1 by changing either or both of these factors. 

2.1 Notation 
Each transect is divided into a number of subtransects or legs, 
where the start and finish of each leg occurs at a change in 
effort. Throughout this article, group or school size is used 
to refer to the number of animals in a single detected group, 
while cluster refers to a spatial cluster of animal groups (where 
a group may comprise just one animal). 

Define the total line length (total effort) as L ,  the length 
(and thus effort) of a single transect or transect leg as 1 ,  
and the effort factor as A. Let the number of animal groups 
detected be n and the encounter rate (number of groups 
detected per unit length of transect) be e ,  so that e = n/l. The 
group size (number of animals in the group) is given by s, the 
animal density (animals per unit area) by D,  and the value 
of the probability density function of perpendicular distances 
from observations to the line evaluated at zero distance by 

Subscript i is used to refer to the transect, i = 1,. . . , k ,  and 
subscript j refers to the leg within the transect, j = 1,. . . ,mi. 
One leg is deemed to end and the next t o  start whenever 

f (0). 

adaptive effort is triggered or whenever normal effort is 
resumed. Thus, l i j  is the actual distance traveled, or effort, 
for the j t h  leg of the i th transect. Subscript X refers to the 
observation within a leg, X = 1,. . . , nij. Thus, si jx  refers 
to the X t h  observation of the j t h  leg of the i th transect (see 
Figure 1). 

Nominal values refer to the values expected if a convention- 
al straight-line transect is followed. Nominal effort is signified 
with a dash, such as L', the total nominal effort, whereas 
the corresponding actual effort is L. The expected sample 
size if only the nominal effort had been used is represented 
by, e.g., E(n I L'). The same approach is also used for both 
the expected encounter rate and expected group size if only 
the nominal effort had been used, giving, e.g., E(ei I 1 ; )  and 
E ( s ~  11;). 
2.2 Assumptions 
In deriving the estimating equations, the following standard 
line transect assumptions are made: 

(i) Probability of detection on the line, g(O) ,  is one. 
(ii) There is no size bias (the probability of detection is 

independent of the group size). 
(iii) There is no responsive movement of animals in advance 

of detection and any nonresponsive movement is slow 
relative to the speed of the observers. 

These assumptions can be weakened or removed using 
similar strategies as for conventional line transect sampling. 
In addition, the following assumptions are made specifically 
for adaptive line transect sampling: 

(iv) The expected encounter rate for an adaptive track 
is the same as the expected encounter rate for the 
corresponding nominal track. 

(v) The expected group size for an observation on an 
adaptive track is the same as the expected group size 
for an observation when following the corresponding 
nominal track. 

(vi) Conditional on the location of the actual (as distinct 
from the nominal) track line, each observation is 
an independent event; i.e., the probability of an 
observation is only a function of its perpendicular 
distance from the actual line (although the position of 
the line itself may depend on past observations). 

Approaches to dealing with heterogeneity in the detection 
function estimate, and thus weakening assumption vi, are 
explored at the end of the Methods section. 

2.3 Effort Factor Calculation 
The effort factor, A, is the ratio of the actual effort to the 
nominal effort. Thus, the effort factor for the j t h  leg of the 
i th  transect is 

Suppose additional effort is triggered so that we need to 
calculate the effort factor as a function of the remaining effort 
available. Let LE(t) (measured in units of time or distance) 
be the total excess effort remaining at time t .  This quantity 
is calculated as total effort available at the start of the survey 
less the actual effort used up to time t less the nominal effort 
required to complete the survey (without any further adaptive 
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effort). Let < be the expected number of times the effort will 
increase above the nominal level for the remainder of the 
survey. Then the increase in effort following an observation 
is given by the excess effort available divided by the expected 
number of times the effort will increase plus one (for the 
current increase). So the increase in effort for a leg is given 
by 1 . .  23 - 1 ! .  a3 = LE(t)/(l + 6). Thus, from equation (I), we get 

If each effort increase is applied for the same fixed distance 
along the nominal trackline, then E can be calculated from 
an estimate of the trigger rate (the expected number of times 
the survey will meet the trigger condition per unit effort). 
Let l’, be the nominal effort over which the effort increase 
occurs, Lk(t) be the nominal effort remaining at time t, and 
y be an estimate of the trigger rate (y can be obtained from 
previous survey data or be a best guess provided by the 
user). If the trigger condition is a single observation, then 
y is just the encounter rate. Then E = y{Lk(t) - E l ; } ,  SO 

2.4 Estimating Equations 
Conceptually, we estimate animal density separately for each 
transect line using formulas from conventional line transect 
sampling. To avoid bias arising from concentrating more effort 
in areas of high density, weighted means of encounter rate 
and group size are found, weighting by the reciprocal of the 
effort factor. To simplify the methodology, we assume that 
f ( 0 )  is independent of animal density and use a single pooled 
estimate of f ( 0 ) .  

2.4.1 Density estimate. The density for conventional line 
transect sampling, assuming detection on the line is certain, 
is given by (Buckland et al., 1993, p. 56) D = E(n)f(O) 
E(s)/2L’. Assuming f(0) is constant across transects, in the 
absence of adaptive effort, the density corresponding to the 
i th transect is Di = E(ni)f(O)E(si)/(zl;). Replacing the 
parameters by their estimators, we have 

xi j  = 1 + LE(t)/{l;j(l + E ) } .  

E = YLfR(t)/(l+ rlk). 

where E(ni I 1 ; )  and E(si  I 1 ; )  are, respectively, estimates 
of the sample size and group size if the nominal track line 
had been followed. For conventional surveys, where the effort 
factor is one, these estimators are simply ni and, assuming 
no size bias, Si, respectively, where S i  is the mean size of 
groups detected on the transect. Derivation of the estimators 
is explained in the sections that follow. 

Thus, the overall density estimate is (Buckland et al., 1993, 
P. 92) 

k 

i=l 
L’ (3) 

The estimate of f ( 0 )  is based on pooled data across all 
transects; thus, an estimate of the variance of the density 
estimate, Q ( f i ) ,  cap be separated into two components, 
Q{D/f(O)} and V { f ( O ) } ,  which we assume are independent. 
Using the delta method (Seber, 1982, p. 5-7), an estimate of 
the variance of the density estimate is 

(4) 

where H = f ) / f ( O )  and Q ( H )  = [ l / L ’ ( k  - l)] C?=:=, {&(Hi  - 
H ) ’ } ,  with Hi = & / f ^ ( O ) .  

2.4.2 Effort. By definition, the nominal effort for the j t h  leg 
of the i th transect is l ; j  = l i j / A i j ,  with the nominal transect 
effort and nominal total survey effort given by 1; = Cy!l l i j  

and L’ = Cf==, 1 ; .  
2.4.3 Sample size. An estimate of the sample size if only the 

nominal effort had been used for the j t h  leg of the i th transect 
is given by &nij I 1 i j )  = n i j / A i j ,  with the corresponding 
transect and survey estimates of 

(5) 
j=1 

and 
k 

j=1  

An estimate of the variance of estimated expected sample size 
if only the nominal effort had been used is given by 

i=l 
(7) 

2.4.4 Encounter rate. The encounter rate for the j t h  leg of 
the i th transect is given by eij = nij/lij. So from assumption 
iv, an estimate of the expected encounter rate if only the 
nominal effort had been used for the j t h  leg of the ith transect 
is given by E(eij I 1’) = nij/lij  = E(nij I l : j ) / l : j .  Using 
weighted averages, an  estimate of the expected encounter rate 
if only the nominal effort was used for the ith transect is 

j=1 j=1 

and an estimate of the survey encounter rate if only the 
nominal effort was used is 

k k 

C 1:: 
i=l a= 1 

(9) 

Thus, an estimate of the variance of the expected survey 
encounter rate if only the nominal effort had been used is 

2.4.5 Group size. In the absence of size bias, an estimate of 
the expected group size for the j t h  leg of the i th transect is 
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given by the observed mean group size for the leg. So from 
assumption v, an estimate of the expected group size if only 
the nominal effort had been used is E(sij I l i j )  = E ( s i j )  = 
Ex=, sijxlnij.  Using weighted averages, an estimate of the 
expected group size for the ith transect if only the nominal 
effort had been used is given by 

nij 

j = l  
E(Si  1 I : )  = m, 

j=1 
m; 

Similarly, an estimate of the expected group size if only the 
nominal effort had been used is 

E 

i=l 
E 

An estimate of the variance of the expected group size if only 
the nominal effort had been used is 

z=1  

(13) 

2.4.6 f(0). It is assumed there is no correlation between 
density and f(0) and so observation data are pooled across 
all transects to produce a single estimate of f(0) using 
conventional techniques (cf., Buckland et al., 1993). 

2.4.7 Modeling heterogeneity in f(0). The above methods 
do not allow for heterogeneity between groups in the probabi- 
lity of detection due to group size, weather conditions, etc. In 
practice, adaptive effort is more likely to be triggered in good 
sighting conditions, and so the probability of detection on the 
adaptive leg may be enhanced. Because such observations will 
be overrepresented in the sample, the f(0) estimate (which is 
the reciprocal of the estimated effective strip half-width) will 
be negatively biased. 

We can seek to model the heterogeneity; however, if we 
have not measured the relevant covariates or if probability of 
detection of further animals changes following an observation 
(because observers become more alert or they continue to 
watch detected animals), this approach may not be wholly 
effective. Another approach is to downweight the influence of 

observations made during adaptive legs on the likelihood. 
Adopting the principle that a single observation at distance 
y from the line when the effort factor is one should have 
the same contribution to the likelihood as X observations 
at distance y when the effort factor is A,  we obtain the 
modified likelihood L(8) = n,”=, { f ( ~ ~ ) } ~ / ’ ~ ,  where yi is the 
perpendicular distance from the line of the ith observation, 
i = 1,. . . , n; X i  is the effort factor corresponding to the ith 
observation; and @ represents the parameters of f(yi). 

We now maximize this modified likelihood function with 
respect to the parameters off( . ) .  For example, consider the 
half-normal model with ungrouped data and no truncation. 
So e is the scalar g2 and f ( y )  = e -y2/202, y 2 0. Then a 
weighted estimate of f(0) is given by 

where 
n n 

i=l 

and the variance estimate is given by 

(15) 

3. Simulation 
To investigate the efficiency of the adaptive approach, a 
computer program was developed to simulate clustered 
populations and then simulate conventional and adaptive line 
transect surveys on these populations. For these simulations, 
it was assumed that animals occurred singly, i.e., group 
size was always one. Estimation of the detection function 
was performed using the distance sampling analysis software 
DISTANCE 2.2 (Laake et al., 1994) using the following 
models: half-normal key + cosine adjustments, half-normal 
+ hermite polynomial, hazard-rate + cosine, hazard-rate + 
simple polynomial, and uniform + cosine. 

3.1 Population Models 
Three base types of population were simulated using the 
computer program: a population exhibiting complete spatial 
randomness (CSR), a clustered population, and a highly 
clustered population. Each population had an expected size 
of 600 and was created within a square area (population 
frame) of 100 x 100 units. The clustered and highly clustered 
populations were simulated using a Poisson cluster process 
(Diggle, 1983). The number of parent clusters was simulated 
using a Poisson(40) distribution for the clustered population 
and a Poisson(l5) distribution for the highly clustered 
population. The number of animals within each parent cluster 
was then simulated using a Poisson(l5) distribution for the 
clustered population and a Poisson(40) distribution for the 
highly clustered population. For each parent cluster, the 
location of the center of the cluster was simulated using a 
uniform(0, 100) distribution for the vertical coordinate and 
another uniform(0,lOO) for the horizontal coordinate. Finally, 
the position of each animal within each parent cluster was 
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Figure 2. Example simulation of an adaptive line transect 
survey for a highly clustered population. Animals are 
represented by dots and each observed animal is bounded by a 
square. In this case, the population size is 724 and the number 
of observations is 80. 

calculated relative to the parent cluster center. The radial 
distance to each animal was simulated from a normal(0, 4) 
distribution and the radial angle using a uniform(0, 27r). If, 
following this, the animal lay outside the population frame, 
the distance to the animal was wrapped around to the 
opposite edge, horizontally or vertically as necessary, until the 
animal was within the population frame. An example adaptive 
simulation of a highly clustered population is shown in Fig- 
ure 2. 

3.2 Survey Simulation 
Each simulated population was sampled first using a 
conventional line transect survey and then using an adaptive 
line transect survey. The transects were systematically spaced 
with a random start for the first transect and a buffer zone 
was defined in which transects could not be located to reduce 
edge effects. For each survey, the total effort was set at 1500 
units and, for the adaptive surveys, the nominal effort was set 
at 1300 units. The detection function was simulated using a 
half-normal detection function with parameter cr = 0.3, with 
perpendicular distances truncated at 2 units (effectively no 
truncation). 

The trigger to start adapting was a single observation in 
the previous 0.66 length of transect, after which zigzagging 
occurred for 12 steps (3 complete zigzag cycles), spanning 
approximately 6 units of nominal line, with the angle of 
the zigzags adjusted appropriately for the effort factor. If 
there was an observation during the last step of an adaptive 
section, the adapting continued for another 12 steps. Each 
transect started in straight-line mode irrespective of whether 

Table 1 
Eficiencies of adaptive simulation estimates, 

where eficiency i s  measured as mean variance of 
conventional estimator f r o m  1000 simulations divided 
by mean variance of corresponding adaptive estimator 

Estimator adaptive efficiency 

Population 

CSR 0.959 1.032 0.990 
Clustered 0.993 1.265 1.050 
Highly clustered 1.035 1.349 1.059 

the survey was still adapting at the end of the previous 
transect. 

Additional simulations were performed using the highly 
clustered populations to investigate the effects of heteroge- 
neity in the detection fnnctjon. First, to simulate an increase 
in observer awareness, following an observation, the detection 
function for the adaptive surveys was changed. For the 
conventional surveys and the straight-line sections of thc 
adaptive surveys, a half-normal detection function with o = 
0.3 was used as before. However, to simulate an increase in 
observer awareness, u was increased to 0.4 on the adaptive 
(zigzag) sections of the adaptive survey. Second, to simulate 
heterogeneity introduced by changes in weather, simulation 
of the highly clustered population was again rerun, this time 
using a half-normal detection function with o = 0.15 for 
the first 400 units of survey effort, reverting to u = 0.3 for 
the remainder of the survey. This type of heterogeneity was 
applied to both the adaptive and the conventional surveys 
because they are equally likely to encounter bad weather. 
For these simulations, the detection function was estimated, 
assuming the half-normal model, using equations (14) and 
(15). 

3.3 Szmulation Results 
For each population type, 1000 populations were generated, 
with both a conventional and an adaptive survey run on 
each population. Two additional runs of 1000 highly clustered 
populations were generated to test heterogeneity in the 
detection function due to increased observer awareness and 
changes in weather conditions. The comparative efficiencies 
of estimators were calculated by dividing the mean estimator 
variance from 1000 conventional survey simulations by the 
mean estimator variance of the corresponding 1000 adaptive 
survey simulations. The efficiencies for the expected nominal 
encounter rate, f ( O ) ,  and density estimators for the three 
population types are given in Table 1. 

For the clustered populations, adaptive sampling indicated 
improved density estimate precision, with an efficiency of 
1.050 for the clustered and 1.059 for the highly clustered 
populations. As expected, adaptive sampling was less efficient, 
at  0.990, than conventional sampling for the CSR population 
type. This is because all animals are randomly located, so 
increasing the search effort following an observatioil does 
not increase the probability of detecting another animal. 
Thus, with a CSR population, the expected total number of 
sightings for an adaptive survey is the same as the expected 
total for a conventional survey. However, the sightings in the 
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Table 2 
Estimated 95% confidence intervals f o r  mean percent relative bias over all 1000 
simulations. For each estimator, the top confidence interval is for the adaptive 

survey simulations and the lower one is for  the conventional survev simulations. 

Estimator 

Population B(e  1 L’) f(0) D 
CSR [-0.91%, 0.52%] [-1.45%, 0.83%] [-1.96%, 0.07%] 

[-0.56%, 0.86%] [-1.41%, 0.16%] [-1.54%, 0.56%] 
Clustered [-1.46%, 0.32%] [-1.84%, -0.35%] [-2.86%, -0.58%] 

Highly clustered [-2.00%, 0.19%] [-0.67%, 0.74%] [-2.16%, 0.44%] 
[-0.50%, 1.55%] [-2.01%, -0.32%] [-1.90%, 0.78%] 

[-1.32%, 0.38%] [-1.34%, 0.25%] [-2.15%, 0.15961 

adaptive survey are then weighted to account for any adaptive 
bias and so there is a decrease in efficiency. 

Ninety-five percent confidence intervals, assuming a nor- 
mal distribution, for the mean percent relative bias of the 
encounter rate, f ( O ) ,  and density estimators are given in Ta, 
ble 2. Overall, there appears to be no or minimal bias. There 
is a small negative bias in the f (0) estimate for the clustered 
adaptive and the conventional highly clustered surveys. This 
is probably because Akaike’s Information Criterion (AIC), 
which was used to select between the contending models, 
tended (70% of the time) to select the Fourier series model 
rather than the (true) half-normal model. There was also a 
small negative bias for the density estimate of the adaptive 
clustered survey, presumably largely due to the negative bias 
in the f (0) estimate. 

The mean root mean square errors (RMSE) for the en- 
counter rate, f (0), and density estimators are given in Table 
3. The adaptive sampling encounter rate estimators do not 
perform well. However, the improvement in the f ( 0 )  estimate 
outweighs this, leading to  an overall improvement in the pre- 
cision of density estimates. 

Table 4 shows the coverage of a log-normal 95% confidence 
interval for the encounter rate, f (0), and density estimators. 
Values are presented as the percentage of occasions the true 
value is below or above the estimated confidence interval. Cov- 
erage for the f (0) estimates was poor, with the true value be- 
ing larger than the upper confidence limit for 13-16% of the 
time. Much of this can be explained by the tendency for AIC 

Table 3 
Mean root mean square errors for 1000 simulations. 

For each estimator, the top value is the mean for  
the adaptive Simulations and the bottom value 
is the mean for  the conventional simulations. 

to select the Fourier series model rather than the half-normal. 
In general, the confidence interval coverage was very similar 
for the two approaches. 

The simulations of heterogeneity in f (0) were analyzed 
using the estimating equations (24) and (26) for the detec- 
tion function. These gave improved adaptive density vari- 
ance estimator efficiencies of 1.068 for the simulation of in- 
creased observer awareness and 1.036 for the simulation of 
bad weather. However, in the case of the bad weather simu- 
lation, there was an improvement in the encounter rate effi- 
ciency and a decrease in the f ( 0 )  efficiency. This was borne 
out in the mean RMSEs for the density variance estima- 
tors. In the increased observer awareness simulation, the mean 
adaptive RMSE (0.0115) improved on the mean conventional 
estimator RMSE (0.0119), while for the bad weather sim- 
ulation, the mean adaptive RMSE (0.129) was larger than 
the mean conventional RMSE (0.0120). There was a small 
negative bias in the adaptive density estimate for the in- 
creased observer awareness simulation, while the conventional 
survey indicated a small positive bias. Ninety-five percent 
confidence intervals for the mean percent relative bias were 
[-3.347, -1.0091 and [0.358,2.786], respectively. The corre- 
sponding bad weather simulation confidence intervals were 
[-8.623, -6.1571 and [-6.276, -3.8991 for the adaptive and 
conventional surveys; thus, both density estimates demon- 
strated a negative bias. 

Table 4 
Percentage of occasions the true value is below, 

above a 95% confidence interval for the estimator 
for 1000 simulations. For each estimator, the top 

values are for  the adaptive simulations and the 
bottom values for  the conventional simulations. 

Mean RMSE Estimator 

Population D Population B ( e  I L’) D 

CSR 0.00520 0.330 0.0098 
0.00519 0.336 0.0101 

Clustered 0.00648 0.321 0.0111 
0.00618 0.341 0.0112 

Highly clustered 0.00804 0.304 0.0127 
0.00752 0.362 0.0131 

CSR 3.0%, 3.2% 2.9%, 13.2% 2.8%, 5.7% 
3.0%, 2.7% 4.1%, 13.2% 3.4%, 4.9% 

Clustered 1.2%, 1.7% 5.3%, 16.2% 1.1%, 3.5% 
0.4%, 1.2% 3.8%, 12.9% 0.8%, 2.3% 

Highly clustered 0.4%, 1.1% 6.3%, 13.1% 0.6%, 2.1% 
0.3%, 0.6% 5.0%, 14.0% 0.4%, 2.5% 
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4. Harbor Porpoise Example 
4.1 Overview 
To assess the viability of adaptive line transect sampling, 
a series of experimental surveys of harbor porpoise was 
performed in August 1996 by the Northeast Fisheries 
Science Center (NEFSC), Woods Hole, Massachusetts, U.S.A. 
Comparative conventional and adaptive surveys were made 
using the methods of this article. To simplify the approach 
for this first trial, the effort factor was fixed and both 
survey types followed the same nominal transects. This meant 
that the adaptive surveys used a greater total effort than 
the effort used for the conventional surveys. The surveying 
was conducted in areas of expected high porpoise densities 
to provide a better comparison between the two sampling 
strategies. 

To identify a suitable fixed effort factor, a series of simula- 
tions was run. Population parameters were adjusted, by eye, 
to match expected abundance estimates and sighting patterns 
using data from previous surveys of the area (Smith, Palka, 
and Bisack, 1993; Palka, 1995, 1996). Experimentation with 
different adaptive patterns and effort factors identified a single 
zigzag with a fixed effort factor of two to  be the most efficient 
of the adaptive mechanisms assessed. 

4.2 Survey Procedures 
A team of five observers collected sighting data, with three 
observers working at a time, one observer concentrating to 
the left, one ahead, and one to the right. Observers were 
trained to pay particular attention to the area on the outside 
of each turn, where there is a greater area to cover than 
on the inside. This is highlighted by the shaded triangles in 
Figure 3, in which the survey strip is conceptually shown as a 
series of parallelograms; ideally, the survey design should keep 
these triangles small relative to the survey strip to reduce the 
turning effect. 

Observation was with the naked eye, while binoculars were 
used to confirm school (group) size and species if necessary. 
Because harbor porpoise are small and difficult to see, surveys 
were generally conducted only in Beaufort sea state 3 or less, 
although some of the adaptive surveys included effort above 
Beaufort 3. For the adaptive surveys, the trigger to increase 
the effort (zigzag) was based on the number of animals seen 
within the previous 15 minutes. The trigger value was held 
constant within a single survey but was set at two animals for 
some surveys and four for others. 

4.3 Harbor Porpoise Survey Results 
Surveying was carried out between August 6 and August 
28, 1996, in the Gulf of Maine/Bay of Fundy region. During 
this time, a total of seven comparative conventional/adaptive 
survey pairs were conducted across four locations in the area. 

The data from the seven comparative surveys were pooled 
to create one conventional survey and one adaptive survey. 
Because harbor porpoise can be difficult t o  sight in even low 
Beaufort, the data were divided into two strata for analysis, 
Beaufort 0-1 and Beaufort 2-3. To aid the comparison of 
the methods, all survey legs and associated sightings carried 
out above Beaufort 3 were dropped. This led to the adaptive 
survey having a smaller nominal effort than the conventional 
survey, although both surveys had originally used the same 
nominal transects. For the conventional survey, 29% of the 

Figure 3. Conceptually, the survey strip can be considered 
as a series of parallelograms. Ideally, the shaded triangles will 
be small relative to the size of the strip and observers should 
be made aware of the need to pay particular attention to the 
areas on the outside of each turn. 

effort was at Beaufort 0 or 1 and 71% at Beaufort 2 or 3, 
while for the adaptive survey, the figures were 42 and 58%, 
respectively. Total effort for the conventional survey was 233.9 
nautical miles (Nm) with 313 sightings before truncation, 
and total effort for the adaptive survey was 281.7 nautical 
miles (nominal effort 183.1 nautical miles) with 551 sightings 
before truncation. Sightings were truncated at 700 m, giving 
303 conventional sightings and 523 adaptive sightings (312.2 
nominal sightings). There was evidence of school size bias, 
and so for the school size estimates only (equations (12) and 
(13)), the truncation distance was reduced to 400 m, giving 
252 conventional and 409 adaptive sightings. 

The sightings were analyzed with DISTANCE 2.2 (Laake 
et al., 1994) to produce adaptive and conventional survey 
f ( 0 )  estimates. Model selection was with AIC from the 
Fourier, half-normal with Hermite adjustments, and hazard- 
rate models, with the hazard rate selected in each case. 
The encounter rate, school size, school density, and harbor 
porpoise densities for the conventional and adaptive strata 
were then estimated using equations (2)-(13). Finally, para- 
meters were estimated by averaging the stratum estimates 
weighted by the proportion of effort in each stratum. The 
variance and CV of all parameters were estimated by boot- 
strapping 500 times, resampling transects, with the restriction 
that the total effort should be within 5% of the base sample. 
Normally, it would not be valid to  bootstrap transects using 
this adaptive approach; however, as the effort factor was fixed 
for the survey, it was appropriate in this case. 

For the adaptive surveys, the total effort was approximately 
1.2 times greater than the total effort for the conventional 
survey. To account for this, the conventional density estimate 
CVs were adjusted using the approximation (Buckland et al., 
1993, p. 304) Le = Lc{CV(6c)}2/{CV(6e)}z, where L,  and 
D, are the effort and density estimate for the conventional 
survey and L,  and De relate to a conventional survey with the 
total effort extended. Thus, the equation becomes CV(De) = 
(L,/Le)1’2CV(Ijc). 
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Table 5 
Summary of analysis estimates f o r  harbor porpoise surveys. CVs are shown in brackets. The  adaptive 

improvement i s  measured as the Conventional estimate CV divided by the associated adaptive estimate CV. 

f i ( e  I L’) m D IjS 

Survey (Schools per Nm) E(s  I L’) (m-’ x (Porpoises per Nm2) (Schools per Nm2) 

Conventional 1.30 2.21 4.45 11.24 5.05 

Adaptive 1.71 2.43 2.83 11.07 4.71 

Adaptive improvement 1.20 0.97 1.06 1.08 1.14 

(12.2) (8.9) (14.9) (21.5) (19.7) 

(10.2) (9.1) (14.1) (19.8) (17.4) 

A summary of the estimates for the pooled surveys is pro- 
vided in Table 5. Two density estimates are provided, one 
corresponding to individual porpoises (D) and one to por- 
poise schools (Ds) .  For the simulation exercise, efficiency was 
measured by the ratio of the conventional and adaptive vari- 
ances; however, this assumes the means are equal, which may 
not be true because this was a field experiment. Thus, the 
results were compared by dividing the coefficient of variation 
(CV) of the conventional estimate by the CV of the adaptive 
estimate. 

A randomization version of Levene’s test (Manly, 1997) was 
used to test if the adaptive and conventional variances were 
equal, and a randomization version of a one-way ANOVA was 
then used to test if the means varied between the two survey 
types. In both cases, the computer package RT (Manly, 1996) 
was employed to perform the tests. All parameters except the 
encounter rate had a significant difference in the variances, 
and all parameters except the school densities showed a sig- 
nificant difference in the point estimates. 

5. Discussion 
Overall, the simulation results indicate that conditioning on 
the effort factors only introduces small bias and that adap- 
tive sampling offers potential for improving density estimator 
precision for clustered populations. They also indicate a cor- 
relation between the degree of clustering and the adaptive 
efficiency. Adaptive line transect sampling will offer no bene- 
fit for a population that is not spatially clustered and will in 
fact be detrimental to efficiency. However, most natural popu- 
lations will display some clustering, and for populations with 
high clustering, a benefit is certainly apparent. An indication 
of clustering is provided by the relative variance (cf., Cressie, 
1993, p. 590), with the three simulated population types hav- 
ing mean values of 1 for the CSR, 12 for the clustered, and 
31 for the highly clustered. 

The efficiency is also dependent on appropriately selecting 
the trigger and stopping function, effort factor calculation, 
adaptive pattern, and amount of excess effort available. Thus, 
further work is necessary to estimate the degree of clustering 
for which adaptive sampling is beneficial and how to tune the 
adaptive settings to maximize efficiency. Ideally, simulation 
will be used to identify suitable parameters prior to any sur- 
vey. However, as a rule of thumb, the zigzag pattern with two 
or three complete cycles performs well and a suitable trigger 
value could be obtained either from a short pilot survey or by 
examining previous survey data. 

The simulations were sensitive to changes in the adaptive 
pattern, In particular, if the adaptive track was too large SO 

that it frequently stepped outside an animal cluster, this in- 
troduced (small) bias into the encounter rate estimate. This 
is due to violation of assumption iv, that the expected en- 
counter rate for the adaptive track is the same as the ex- 
pected encounter rate of the corresponding nominal track. In 
reality, extra effort is more likely to be triggered when pass- 
ing near the center of a cluster, so that adaptive legs may 
tend to have a slightly lower expected encounter rate than 
the corresponding nominal legs. It should also be noted that 
the higher the effort factor the more acute the turn on the 
zigzags, which may introduce both navigation issues and het- 
erogeneity through problems such as double counting. 

The ad hoc approach to handling heterogeneity in f (0) per- 
formed reasonably well. For the bad weather simulation, the 
mean adaptive density estimator RMSE was larger than the 
mean conventional RMSE, although this can partly be ex- 
plained by the reduced increase in adaptive observations com- 
pared with the other surveys. Poor sighting conditions were 
simulated for 400 units, meaning that the adaptive survey 
seldom triggered during this time. Thus, the majority of the 
adaptive triggering occurred during the remaining 900 units 
of nominal effort, causing larger adaptive zigzags, which for 
much of the time would then step outside clusters. 

Ideally, the simulations would have estimated group size 
instead of modeling observations as single animals. However, 
the survey experienced group size bias and so, to provide a 
useful comparison, the simulations would have also needed to 
model the bias. 

Investigation is also necessary into how to handle a sur- 
vey involving multiple species. Users could select to trigger 
on one species only, but then the weights will result in ineffi- 
cient estimation of density of other species unless their areas 
of high density correspond to those for the trigger species. 
If the primary species and the secondary species are not spa- 
tially correlated by habitat, feeding, or other factors, it may be 
acceptable to treat the secondary species’ sightings as conven- 
tional sightings and analyze appropriately. The effort factor 
calculation does not adjust for changes in expected encounter 
rate as the survey progresses, so if there was a density gradient 
in the survey area, there is the potential for the adaptive al- 
gorithm to be inefficient. This may adversely affect precision, 
but bias should be unaffected. To minimize this effect, nom- 
inal tracklines should run roughly perpendicular to known 
density contours. If the gradient was extreme and there were 
few tracklines such that there was an excess of additional ef- 
fort remaining at  the end of the survey, there is the potential 
for the adaptive track to step outside clusters and so induce 
a small amount of bias. 
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Because the effort factor is a function of whether the survey 
is ahead of or behind schedule, the method can accommodate 
some loss of effort due to poor conditions. Effort simply re- 
sumes when conditions improve, and the effort factor in adap- 
tive legs is reduced accordingly. One, so far unexplored, area 
of adaptive line transect sampling is the use of effort factors 
less than one. Survey coverage may be incomplete in some 
regions, and it may be possible to treat these incomplete ar- 
eas as sections with an effort factor less than one so that the 
missing data do not bias abundance estimation. 

Applying the methods to porpoise surveys was relatively 
straightforward, although for this survey, it was simplified by 
the use of a fixed effort factor. The encounter rate was also 
considerably improved, which may be partly due to a higher 
proportion of the conventional survey, relative to the adaptive 
survey, being carried out in Beaufort 2 or 3, when sighting 
would be more difficult. 

In summary, the methods proved both practical and ben- 
eficial to apply to the harbor porpoise survey, with an 8% 
improvement in the porpoise density estimate CV over the 
conventional survey. The survey was fortunate because there 
was sufficient information available to allow appropriate adap- 
tive parameters to be identified prior to commencing. The ex- 
periment did not, however, exploit the method’s potential to 
enable a survey to complete to a fixed time and cost. It is ex- 
pected that this may well prove the niost significant benefit, 
as it allows additional effort assigned to a survey to, e.g., ac- 
count for bad weather, to be efficiently allocated throughout 
the survey. 
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RESUME 

L’Bchantillonnage adaptatif par transect offre par rapport & 
1’Bchantillonnage classique par transect, la possibilitb d’am6- 
liorer l’efficacitb de l’estimation des densitds de populations, 
d8s lors que ces dernihres sont reparties en tiches. Dans ce 
type d’Bchantillonnage, l’effort de collecte est amplifik pour les 
zones de fortes densitks en augmentant le nombre d’observa- 
tions. Son inconvenient vient du fait que l’effort de collecte 
n’est alors plus connu & l’avance. Nous dBveloppons pour 
ce type Bchantillonnage, une mkthodologie qui en variant le 
degrB d’adaptation, permet de fixer l’effort total de collecte au 
niveau du plan d’kchantillonnage. Par rapport b l’dchantillon- 
nage classique par transect, la mkthodologie proposBe four- 
nit une meilleure prise en compte des alkas rencontres lors 
de la carnpagne d’kchantillonnage comme, par exemple, une 
mauvaise mBtBo. Dans l’analyse, les observations issues des 

sections adaptatives sont contre-balancBes par l’augmentation 
de l’effort. Nous Bvaluons la mBthodologie par simulation et 
sur des donnees issues d’inventaires de marsouins du Golfe du 
Maine, en comparant l’approche proposBe B I’approche con- 
vent ionnelle. 
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